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ITEAT TRANSFER FOR LAMINAR SLIP FLOW OF A
RARKETED GAS BETWKEN PARATLEL PLATES
WITH UNSYMMHETRICAIL, WALL HEAT FLUX
by Robert M. Tnman

Lewis Research Center

SUMMARY

An analysis has been made to determine the effects of low-density phenom-
ena on the forced convection heat-transfer characteristics for fully developed
laminar flow in a parallel plate channel for unsymmetrical heating involving a
constant heat {lux along each of the walls. Consideration is given to the
slip-flow regime wherein the major rarefaction effects are manifested as veloc-
ity and temperature jumps at the channel walls. The results obtained apply
along the entire length of the channel. The solution contains series expan-
sions, and analytical expressions for the complete sets of elgenvalues and
eigenfunctions are presented. The results give the wall temperatures and the
thermal entrance lengths for the channel for variocus mean free paths and wall
heat {lux ratios. The results indicate that, in general, the thermal entrance
length is decpeonsed with increasing gas rarefaction and also that for a given
mean frce vuih e thecrnnl entrance length is greater for unsymwmetrical heating
than for a cymmelrical wall heat flux. ®xtension of the results is made or in-
dicated to account lor less frequently considered slip effects such as wall
shear work, modified temperature jump, and thermal crecep velocity.

LNTRODUCTION

The heating and cooling of gases flowing inside ducts are among the most
important heat-transfer processes in engineering. The design and analysis of
compact heat exchange equipment, for example, requires a knowledge of the duct
wall temperatures. Asymmetric heating or cooling is often encountered when
dealing with forced convection heat transfer for gas flow through flat rectan-
gular ducts. In a compact heat exchanger, for instance, the core very often
consists of stacks of rectangular passages through which a gas flows. In the
outermost passage of the exchanger core, the gas flows between a plate and the
unheated slructure which may be insulated from the outside environment. Other
examples of instances when this situation may arise are (1) when different
coolants are employed in adjacent flow channels, so that the sandwiched gas ex-
periences unequal heat addition or removal at its channel walls; (2) when the
temperature of the enviromment at one side differs from that at the other side



of the channel, so that unequal wall heat fluxes exist; or (3) when heat leak-
age or addition through insulation occurs.

An increasingly important engineering problem is that of predicting heat-
transfer characteristics of slightly rarefied gases Tlowing inside ducts.
Under the conditions of high-altitude flight, for example, the gas flow inside
a flat duct may be sufficiently rarefied so that the appropriate mean free path
becomes too large for the application of continuum transfer egquations but not
large enough for free-molecule or transition concepts to apply. In this flow
regime of slight gas rarefaction, termed the slip-flow regime, the gas density
is slightly less than that characteristic of a continuum flow. At this
slightly reduced density, the gas adjacent to a solid surface will have a ve-
locity and temperature different from those of the surface. The effects on the
heat-transfer conditions in channels of these low-density phenomena, combined
with unsymmetrical heating or cooling situations, are of practical interest to
the design engineer.

The case of laminar continuum flow between parallel flat plates with dif-
ferent temperatures prescribed along each of the two walls has been considered
in references 1 to 3. The case of laminar continuum flow between parallel
flat plates with unsymmetrically prescribed heat flux at the walls has been in-
vestigated in reference 4.

Heat transfer for laminar slip flow of a rarefied gas in a parallel plate
channel has been studied for uniform wall heat flux (ref. 5). The results
allow for either equal heating at both walls or heating one wall and insulating

at the other.

The present investigation is concerned with the heat transfer for laminar
slip flow of a rarefied gas between parallel plates with constant but unequal
heat fluxes specified at the walls. Flow through a flat rectangular duct may
be expected to approximate the flow between parallel plates 1f one side of the
rectangle is large compared with the other, the heat fluxes being perpendicular
to the long side. 1In addition, the results are expected to apply for annuli
where the radius ratio is close to unity.

The present analysis requires the calculation of the odd eigenvalues and
constants for laminar sliip flow of a rarefied gas, such that the complete solu-
tion is obtained by combining these odd gquantities with the even eigenvalues
and constants that have been determined in reference 5 for a symmetrically pre-
scribed uniform wall heat flux.

In the main body of the investigation, the effects of velocity-slip and
temperature-jump boundary conditions are studied. In the final section of the
investigation, modification of the heat-transfer results will be made or dis-
cussed to account for the effects of wall shear work, modified temperature

Jump, and thermal creep velocity.

ANALYSIS

A schematic diagram of the system under study is pictured in figure 1,



which also shows dimensions and coordinates. The di-
u rection of the gas flow is from left to right. The
B S S N flow is assumed to be laminar, incompressible, and
L b ___ fully developed. The fully developed velocity distri-
uly) bution for slip flow in a parallel plate channel has
—rft 1t 1 71 been considered in reference 5, and the results are
G2 used in the present investigation. For x < O the
Figure L. - Physical model and coordinate ~ Channel walls and gas are lsothermal at temperature
system. ty, whereas for x > O the constant heat fluxes (per
unit surface area) dy and g, are applied at the
upper and lower walls, respectively. These fluxes are taken as positive when
the gas is being heated. It is desired to determine the temperature distribu-
tions along the entire length of the channel.

Energy Equation

The energy equation for the channel illiustrated in figure 1 can be written
as

St d%t
u 8; = y (l)

The gas properties have been assumed constant, and viscous dissipation and
axial conduction have been neglected compared with conduction in the transverse
y-direction. The boundary conditions are

Specified wall heat flux:

ot ¢
y=?l at y =+b, x>0 (2a)

Specified wall heat flux:

q.
g—;’:-% (2b)

Specified entrance temperature:
t =t at x =0 (2c)

The slip-flow velocity distribution is given in reference 5 as

2

EaRRURE S s (32)
Ug 68

— =11 =17% (3b)



where 6 = gu/Eb. The slip coefficient &, 1s given by the expression
(ref. 8)

_2-8, (4)

€., =

where g 1s the specular reflection coefficient and 1 is the mean free path,

R _t
- </‘ E_V?.g (5)

noja

Equations (1) and (2) may be expressed in terms of nondimensional gquantities as

M 9%t
f e 6
(ﬂ) 5@ aﬂé ( )
. b
ot 4
gﬁ = at n =1 (7a)
Ot 9.0
%%-: -—  at q=-1 (7p)
t =t at ¢ =0 (7¢)

To obtain a solution for t that will apply over the entire length of the
channel, it is convenlent to break +t 1into two parts. The first part is 14,
the fully developed solution, which applies far down the chanvnel from the en-
trance. The second parl is te, which is an entrance region solution that is
added to t to obtain temperatures in the region near the entrance of the
channel. The temperatures throughout the channel are given by

to=ts + b (8)

Fully Developed Solution

Far from the entrance of the channel the temperature rises linearly in the
axial direction because of the uniform (but unequal) heat inputs at the channel
walls. TFrom a heat balance on the gas, the temperature gradient in the fully
developed region must be

Sty (a + a5)b
8@" = const = - (9)

2K

For the fully developed situation the boundery condition at the entrance of the
heated channel (x = 0) need not be considered, since it is accounted for by the
entrance region solution, and equation (9) may be rephrased as



L + 4 =X
d ~ ~0 2b
= =2+ H
(qy + apJ® = Repr * H(n) (10)
2K
The function H(n) is found by inserting equation (10) into the differential
equation (6). This leads to the equation for H(n) as

2
d~H
%2 = £(n) (12)
dn
The boundary conditions on H(n) are determined from the boundary conditions on
tgs so that

dH (qlb)(2K)

— = t =1 1z
dn (ql + qubK & n (122)
aH (QZb)(ZK)
— = - r— at = -1 12b
dn = 7 (g + q)BK k (125)

Consideration of an overall energy balance on the gas for the length of channel
from O to x produces the additional condition on H(n)

+1
j/; H(n)£(n)dn = 0 (12¢)

Equation (11) can be integrated directly. The resulting expression for tg 1is

X
fatto_ |*Z 3, 1o, z9 - ap)
(qp + ag)b ~|RePr ~ 2 W -8 " 280 a; + do
ok
Yg 1 2 1l 4 13 Ug @ 2
r 2 (-3t g "256)+<'§> s (29

The quantity in the first bracket on the right side of equation (13) rep-
resents the customary transverse temperature distribution for continuum flow
conditions (ref. 4), while the quantities in parentheses are connected with the
effect of the velocity jump. Equation (13) applies only in the fully developed
region downstream of the thermal entrance region.

Entrance Region

To determine the solution in the thermal entrance reglon the function te
is needed. The function te must satisfy the equation



3t 3%

£(n) gc-e‘ = ane (14)

with the boundary conditions

dtg
ST]_ =0 at 1 =-1 and at n=+1 (lSa)

At x = 0, the condition is
t(0,n) = ty = td(o:'ﬂ) + ‘Ge(O;T})
or by rearranging,

'te(O,T]) = ‘E'Jd(o;n) - to] | (15b)

Tt will be convenient to represent the entrance temperature T, by two func-
tions, @(¢,n) and Q(t,n), such that (ref. 4)

t a7 - 4
e 1 2
R SR e S 16
(q‘l + qub (C_Ll + (12>Q ( )
2K

By substituting equation (16) into equation (14), it is found that the func-
tion @& is given by

do _ 3%
£(n) & == (172)
3t an
with the boundary conditions
g% =0 at n=-1 and n =+l (170)
and the function O is given by
2
£(n) 5% = 22 (182)
on
with the boundary conditions
on
3n = 0 at n=-1 and n = +1 (18b)

The condition at ¢ = O will be discussed shortly.

A solution to equation (17a) can be obtained as a product of two func-
tions, one depending on ¢ alone, the other depending on 17 alone. Then it
can be shown that & is expressed by the series



o =

“*hn 2p
o(t,n) = a, Y, (n)exp ST (19)
n=1

where A, and Y, are, respectively, the eigenvalues and eigenfunctions of
the Sturm-Liouville problem

N
a2y,
5~ + M (n)¥y = 0

an > (20)

— =0 at n=-1 and 1 = +1

_J

In a similar manner, the function 0 1is expressed by the series

X
“4n 3p

RePr (21)

L,n) = b,Z,(n)exp
n=0

where Y, and 7, are, respectively, the eigenvalues and eigenfunctions of
the Sturm-Liouville problem

afz, )
EEE_ + vy f(n)z, =0

& (22)

2 -0 at n=-1 and 1 = +1

./

Combining equations (19) and (21) in accordance with equation (16) yields the
entrance temperature as

00 _4-)\ x
te = a Y ( )ex_—_p ﬂ
iql+q25b n*n\ RePr
2K n=1
X
- -4y, =
41 - 92 n 2b
ERE bpZyn(n)exp| wpr— (23)

n=0

The coefficients a, in equation (19) and b, in equation (21) are eval-
uated to satisfy the condition at the entrance to the heated channel (x = 0).



Evaluating equations (13) and (23) at x = O and subslituting the values into
equation (15b) gives
e X
A\ . ; 2\
1 - 42 3 5 1 4 39
a T {n) + = bpZy(n) = - |7 1% - 51% - 555
nty n“n
» n 4 + 45 . 4 8 280
n=1 n=0
47 - 4 u u.\8
L2, =2( 12,1+ }fz__>+_s 2 (24)
q *a, 1T \T2T T8 280 =) 105
It is desirable to evaluate a, and b, such that
00
°.4 .
|22 Lpe 39 s L 2,1 4 13
JaY(“)‘ 2" "8n 280+a<4”+8”’280
n=1
2
u u
S P s
t{=) ==|= -G — 25)
m_
y bpZp(n) = -q (26)
n=0
By inspection of equations (25) and (26), it is evident that Y,(n) and Z,(n)
are even and odd functions, respectively; that is, Y,(n) = Y,(-n) and
Zn(n) = —Zn(—n). According to the Sturm-Liouville theory, the coefficients an
and by are given by the results
1
Ug
G, = JE(n)¥y(n)an
8n = - T 1 (27)
f £(n)¥2(n)dn
0
1
jr nf(n)Zp(n)dn
-1
bp = -~ (28)

1
A £(n)25(n)dn



In reference 5 it is shown that the result for the coefficients an reduces to

8y = L (29)

N >y
31 oA
=1, A=\,

The integral appearing in the denominator of equation (28) may be written as

L 2
2 o Zn
£(n)zg(n)an = -22,(1) S o0
1 T\:l:T:Yn

whereas upon substitution of equation (22) and integration by parts the numer-
ator of equation (28) becomes

1
22,,(1)
nf () Zp(nldn = ——
-1
The series coefficients b, are thus
1
by = (30)
, d%y,
Sn or .
T]:l,‘Y‘:Y’n

The funcfions Y, and Z, and the corresponding eigenvalues A, and v,
are as yet undetermined. Nevertheless, before a discussion of the calculation
of these quantities is undertaken, the analysis will be extended to the formu-

lation of several quantities of engineering interest.

Now that td and te are known, they can be superposed as in equation
(8) to obtain the solution that applies over the entire length of the channel,
which is

X 4 X
t - to 4 5 ug . oY (n)e 4hn 2b
caerniRs A R
2K n=1
o
4y =
q‘l ) “Fin 2p
a-l—_l_—qz- n + ann(ﬂ)eXP “RebPr (31)
n=0



Wall Temperatures

When the wall heat fluxes are specified, the wall temperatures are the un-
known quantities that are usually of most practical interest. Before the wall
temperature variations can be determined, however, it is necessary to consider
another effect of gas rarefaction that enters through the thermal boundary con-
dition at a wall, permitting a jump between the surface temperature 1t and

the adjacent gas temperature tg (ref. 6)

3t €t (Ot
- % = = ( = =2 = 32
tg,1 - ty,1 = by 5§)y£b 75 (Sﬁ)nzl (s22)
4 (3t
tg,z = B,z = %(Sﬁ)nz_l (320)

where & represents a temperature-jump coefficient related to other proper-
ties of the system by

2 -a 20 1
4 =~ = T+ 1Pr (33)
Since the wall heat flux is uniform,
(&ﬁ _ %P (&) _T9P
S n=1 K 2 \dn n=-1 K
so that the temperature jump at the walls can be written as
t by = -4 9+ 9> 9 St (34a)
g}l - w}l - 2K q‘l + q_2 Zb
(a7 + ap)b a3 EE
tg,z - tw;B = -4 5K 4G+ az 5 (34b)

Then the wall temperatures tw5l and t,; o can be found by evaluating equa-
2

tion (31) at n =1 and at 17 = -1 and combining the results with equations

(34a) and (34Db)

X
- X 2
w1 % ‘% 171 6 ¥, 2 Eg) . B
Tq_l + q.a)b RePr " 35 7 3 3 105 \ = q + 4 2o
2K
(2] ¢
Bp 3\ 9 -a Dy 75
~*’n 2b 1 4 ~*'n 2Zb
v ) e Uexpl gy | F g, (1) Pofa(Velem (35)
n:l Il=O

10



twz-to  f% 17 6%, 2 (%Y
(7 + aqz)b RePr ~ 35 ~ 35 7 " 105\ 3
2K
X
Q@ 5 -4thn 25
+ — ——
ap t do 2b anYh(l)exp RePr
n=1
4 - a a4y =
1 - 92 -4 75
9+ dp b b2y (1) exP| g5z (36)
n=0

Convenient alternate forms of equations (35) and (36) are to divide the
local wall to bulk temperature difference by the fully developed value. The
resulting ratio will then approach unity for large distances from the channel
entrance. The ratio is formed as follows: The local bulk gas temperature
along the channel is given by

tb_tO

(a; + az)b
2K

X
S
RePr

(37)

Then the difference between the fully developed wall
each wall is

and bulk temperatures for

- 2
(t.w’l tb)d = 1_7 - i E + .___2 U-_S + ql _ q_2 + 4 ql .E_E (38)
(a7 + ap)b 3% 3% 3 105\ © 4] + do q; + qp 2b

2K
t E -
(tq,2 b)d_g 6% 2 (%) %@-% % % (39)
_(il + qZ)b 3% 3 7 105 \ a3 + dp a; + ap 2b

2K

To illustrate the results, fully developed wall to bulk temperature dif-
ferences have been computed as functions of the rarefaction parameter

pﬂ/Rg't /2pb, related to the mean free path through equation (5), p-\/Rgt/Zpb =
~/2/x(1/2v), for gases with a Prandtl number of 0.73 and a specific heat ratio
of 1.4 and for several values of the heat-flux ratio qz/ql. For qz/ql = -1,
the heat addition at the upper wall is equal to the heat extraction at the
lower wall. The case for which the lower wall is insulated is represented by
qz/qi = 0, whereas symmetrical heating corresponds to qz/ql = 1. The slip

parameter &, was taken from equations (4) and (5) with g = 1; vhile gy was

11



taken from equations (5) and (33) for values of the accommodation coefficient
of 1.0 and 0.4. The temperature differences thus obtained have been plotted
in figure 2. As gas rarefaction increases, the temperature difference

- Lol 10— %
Accommodation 8 bE )
icient o— P P
coeff;Cl s Heat flux — 11 /
10— ratio, . 4 21 |z
— o - [
1.0 Gy —4 § -] | A
g T oo V- T}
c Py L. 2 1 L
e ) — '} " 53 1 |
g T /\ // EB - - //’
= PaEd \,c0~ = - |
= M A NA 7 o\ ﬁg - 1//
£5 — TH N, B —
2 & -~ 4 ~— o~
= L A7 4 //.1 g*.f -10—
8= - =7 // T )7 T o~ -8 - A
EZ — - ST lA+T 0 = 7. — e
2 - A A7 EJ % .
2 r/"/’ | P ] b
3.F == - 1 1 e_- I |
E=N- L. - . f =3 4 L
5T T L=+ "2 §% ]
= — B )
= - L 1 §. e L __/1 A
EL - L 1] R ——
h=2K-T) 7// s =
D A L P 2
aa == - p 3
e s P P > |
g ‘ca' 8 P / =
3 T // ‘E 1
=) — 7 Y S A
= b | —
= —‘/ -.6 1/ L L v mma et
A A
.01 .02 .04 .06 .08 .1 2 .01 .02 .04 .06 .1 .2

Rarefaction pa rameter, u,/§gt/zpb

(a) Upper wall. (b) Lower wall.

Figure 2. - Fully developed wall to butk temperature difference. Specular reflection coefficient, 1; specific
heat ratio, 1.4; Prandt! number, 0.73.

(thl - tb)d, for a given heat flux ratio, increases over its continuum value,
obtained by setting uS/H and gt/Zb equal to zero in equation (38). For a

given value of the rarefaction parameter (or, alternately, mean free path), the
effect of increasing heat flux ratio is to reduce the temperature difference
(ty. 1 - tp),- The accommodation coefficient also has an important effect on

2

the temperature difference. ©Smaller values of a give rise to a higher con-

tact resistance between gas and wall and thereby increase the temperature dif-

ference (tw.l - tb)d. The effects of gas rarefaction and accommodation coeffi-
2

cient on the temperature difference at the lower wall (tW52 - tb)d are similar

to those exhibited for the upper wall temperature difference. For a given mean
free path, however, increasing the heat flux ratio increases the temperature

difference.

The ratios of local to fully developed temperature differences at any
location in the channel are found from equations (35) to (39) as

iz



0

o0
x . x
u Q- 13 -4\ q - 4 -4y B
5 1 t n 2b 1 2 n 2b
_s 1t -;- + 1+ A — 20
G(l, E) +4 TR anﬁfn(l)exp(RePr T (L) exp |

n=1 n=0
7 Ug T . (40)
aly, =)+ 4 == +
a4 *+ ds 2b a t dp
bz~
(tw,z - tbjd
' = X = X
u q. 3 -y o 97 - 4 -4y 5
5 2 t n 7o 1”9 n 7o
G(l’ _ﬁ—) Tttt § anYn(l)eXP(RePr ) " v |t +§ bnzn(l)eXP(RePr
n=1 n=0
u dg Et” @ - 9@
G(l, :S) + 4 _
u gy + 49z 2b g7 * Qp
g (41)
where
2
\ ofi, B\ _1_ 8%, 2% (42)
r 35 T 35 7 | 105\7

Equations (40) and (41) can be evaluated when numerical values of Ao Yoo
Y, (1), z,(1), a,, and b, have been obtained for given values of us/ﬁ.

It is of interest to examine the wall to bulk temperature differences at
the entrance of the heated section. This is done by setting x = 0

in equa-
tions (40) and (41) to give the results
(tw,l - t’b)o B
(tw,l - tﬁ)d
o0
u q. & - q
s 1 t 1 2
G{1, — = + a Y (1 1+ b Z (1
(’E) ap +qp 2P n'n(t) 4 * 9 nl1)
n=1 n=0
: (43)

13



u s ':'.t 43 - 9
Gl1 + 4 = + _——
(’ ;3) a7 + dp 2b anYn(l) q + ap 1+ bnzn(l)
n=1 n=0
Us @ & 9 -9 ()
oy, 2)+ bt o 2o ==
a @+t 4t
According to equations (25) and (26), however, when 7 = 1,
(v
Ug
anYn(l) = -G l, -
T
n=1
and
[o0)
D bZa(1) = -1
n=0
Then equations (43) and (44) reduce to the simpler expressions
£
(ty,1 - to)g 9 * 4
€ 7. - - (45)
w,1 b’a 4q 2t
G<l u_s_>+ 120 , W -%
) vt 4t
£t
(ty,2 = tp)g a * 9
& —% 7 = T (46)
w,2 T b’y s 2E
ofy S\, 2% A%
W) w1t Uty

In the absence of a temperature

is zero at the entrance for either plate.
the entrance temperature difference can have a nonzero value.
and (46) have been plotted in figure 3 as functions of the parameters

14

jump, the wall to bulk temperature difference
With a temperature jump, however,
Equations (45)
us/ﬁ:
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Figure 3. - Wall temperature ratio at heated section entrance.

gt/Zb, and qz/ql. The entrance temperature difference at the upper wall in-
creases with increasing wvalues of gt/Zb for all values of qz/ql shown. For
a given value of gt/Zb, increasing the heat flux ratio increases the entrance
temperature difference. The ratio of slip to average velocity has only a small

influence on the quantity (t, ; - tb)o/(tw5l - tb)d for small values of the
2

heat flux ratio, while for qz/ql = 2 the influence of the slip velocity is
more pronounced.

The entrance temperature difference at the lower wall likewise increases
with increasing values of gt/Zb for all values of qz/ql considered. For a
fixed value of gt/Zb, however, symmetrical heating, which corresponds to
qz/ql = 1, has the most pronounced effect on the temperature difference
(tw,Z - tb)o/(tw,z - tb)d. It is interesting to note that, when the heat addi-
tion at the upper wall is equal to the heat extraction at the lower wall, the
ratio of slip to average velocity has no effect on the entrance temperature
difference at either wall.

Transverse Distribution Functions Y(7n), Z(n)

Attention is now directed to the Sturm-Liouville eigenvalue problems
(egs. (20) and (22)). The even function Y(n) is the solution of equation (20)
and the normalization convention Y(0) = 1. Asymptotic expressions for the
even eigenvalues A, and constants a, and Yn(l) are given in reference 5
and the results are presented here to make the analysis more complete:

15



where
1.00
2 .
E-
g¢
sp %
SE
o
=
.96
Th

/%6 + (1 + 46)sin~t

A1+ 46 - ¢

B, tan B, = e (47)
. . 4(49)3/2
Ay = ap¥n(1) = "":lég"ii (48)
C+1+ 7?

Bp = VAp I (49)

2 [1/49 + (1 + 49)sin~L ———JE——%]

8 n )
+/t(n) an = Lt (50)

/] |

.2 .4 .6 .8 Lo
Ratio of slip to average velocity, ugfU

Figure 4. - Value of definite integral for any value of slip
to average velocity ratio.

A, =

-2
7\1’1

+/1 + 66

The first five roots of equation (47)
are given in reference 7 for a number
of values of C. The values of I,
for any given slip velocity us/ﬁ
are shown in figure 4.

The even eigenvalues and con-
stants for the limiting case of slug
flow (ug/W - 1) between parallel
plates are given in reference S5 as

/Ay = nx n=1,2, » « -« (51)

(52)

e odd eigenvaelues 7Y, and constants b, and Z,(1) are determined from

the solution of equation (22) and the condition Z(0) = O. By applying the
methods presented in reference 5 to determine the asymptotic expressions for
symmetrical heating, it is readily found that the asymptotic solution of equa-~
tion (22) satisfying the condition Z(0) = 0 1is

2(n) = (1 + 40) /41 - @ + 20)"/% gin (/7 9) (53)

where T 1is an arbitrary constant, and
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ki
F [nVl - nZ + 46 + (1 + 48)sin-1 —Tl——]
_ ST an - v I * 40 (54)
+/1 + 66

From the condition dZ/dn = 0 at n = 1, the eigenvalues 7y, are obtained as
the roots of the characteristic equation

/%8 + (1 + 48)sin~1 L

5 cot &, = - VI *Ao ¢ (55)
n n 3/2
4(406)
where
8y = +/Tp Iq (56a)

1
The first six roots of equation (55) are given in reference 7 for a number of

values of C.

The constants Z,(1) are obtained by setting vy =71, and n =1 in equa-
tion (53), which results in

1+ 40\1/4
Z,(1) = F(“Z@“) sin &, (57)
The series coefficients b, are found from equations (30) and (53) as
5/4
4(40
by = - (46) . (58)
F(L + 49)1/4<% + 1+ 7§>sin 8y

It is convenient to introduce a new constant B defined as the product of b,
and Z,(1)

(59)

A noteworthy feature of equation (59) is that the coefficients B, are inde-
pendent of the arbitrary constant F.
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For the limiting dase of slug flow (f(n) - 1) between parallel plates, the
0dd eigenvalues and constants are obtained from the solution of the equation

atz, )
Zz, =0
an? + Tnn
- (60)
2y
z,(0) = 0, el 0 at n=-1 and 7 =
The eigenvalues are given by +/v, = (2n + 1)n/2. For f(n) — 1 the eigen-

functions evaluated-at the wall are given as

- (_l)l'l‘*‘lz/}?\(-n .

Then the coefficients

z,(1) = (-1)%F, while the coeffi-

B are

n

cients approach bnlf(n)al
given as B, = -2/Yn.

The first four values of +/A, together with the corresponding values of

A, are listed in table I for several wvalues of the ratio of slip to average

TABLE I. - EVEN EIGENVALUES AND COEFFICIENTS FOR LAMINAR SLIP FLOW

IN PARALLEL-PLATE CHANNEL WITH UNSYMMETRICAL WALL HEAT FLUX

7 Ratio of slip to average velocity, us/ﬁ
0 1/3 3/5 1
Analytiéél Numeri-|{Analytical| Numeri-
solution cal solution cal
solution solution
Eigenvalue
V1| 3.540 | 3.78 3.33 3.35 3.23 3.141
‘/;g 6.800 6.72 8.49 6.41 6.36 6.282
‘/Xg 10.05 9.78 9.65 9.54 9.50 9.423
\/XZ 13,30 12.90 1lz.82 12.69 12.65 12.56
Coefficient
. Aq {-0.2090| -0,1479 -0.2331 -0.2110 -0.2264 |-0.2030
Ay | -.0703 -.0642 -.0701 -.0613 -.0618 -.0508
Az | -.0367 -.0332 -.0336 -.0281 -.0282 -.0226
Ay | -.0230 -.0198 ~.0197 -.0165 -.0161 -.0127

velocity.

The first four values of +/v,, together with the corresponding

The re-

values of Bn

are listed in table IT for the same values of us/u

sults for continuum flow were obtained from reference 4.

To check the level of

accuracy for the slip-flow values, equations (20) and (22) were solved numeri-
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TABLE IT. - ODD EIGENVALUES AND COEFFICIENTS FOR LAMINAR SLIP FLOW

IN PARATIEL-PTATE CHANNEL WITH UNSYMMETRICAL WALL HEAT FLUX

Ratio of slip to average velocity, us/iZ

) 1/3 3/5 1

Analytical| Numeri-|Analytical| Numeri-
solution cal solution cal
solution solution

Eigenvalue

1.845 2.411 1.748 1.915 1.873 1.571
5.125 5.225 4.906 4.875 4.790 4£.712

Vi
Ve
‘/E; 8.405 | 8.250 8.066 7.975 7.927 7.854
Ve

11.68 [11.35 11.23 11.11 11.07 11.00
Coefficient
Bl -0.6641| -0.2309 -0.7286 -0.5495 -0.7678 | -0.8100
B2 -.1157) ~-.0983 -,1163 -.1049 -.1068 -.0902
B3 -.0504| -.0513 -.0469 -.0402 -.0402 -.0324
B, -.0289| -.0254 -.0253 -.0209 -.0208 | -.0168

cally by means of the Runge-Kutta method on an IBM 7094 digital computer. Ref-
erence 5 has presented numerical values for the even quantities Kn and A,
and the results are given in table I. Equation (22) was solved numerically in
the course of the present investigation. The forward integration was started
by using the condition Z,(0) = O and by arbitrarily letting (dZn/dn)n=O = 1.
The eigenvalues were found by trial and error until the zero-derivative bound-
ary condition was satisfied at n = 1. The first four odd eigenvalues Yp and
constants B, are given in table II. The even and odd quantities as computed
from the previously presented analytical expressions are in close agreement
with the values obtained by means of the Runge-Kutta method, especially for

n > z. In view of the very good level of agreement that is demonstrated, it is
concluded that the formulas for the even and odd gquantities are suitable for

n > 2.

Wall Temperature Distributions
With the numerical information in tables I and II the dimensionless wall
temperature variation along the upper wall as given by equation (40) and along
the lower wall as given by equation (41) are plotted in figures 5 to 12 for

various values of uS/ﬁ and gt/Zb and for a few values of qz/ql.

Inspection of figures 5 to 12 reveals several interesting trends. For the
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various wall heating situations represented, increasing the slip velocity de-
creases the difference between bulk and wall temperature at a given axial posi-
tion in the thermal entrance region, while the temperature Jjump increases the
difference. Thus the slip velocity has the effect of retarding t - t, in
its approach to the fully developed value, while the temperature jump has the
opposite effect. It is noteworthy that the wall temperature ratios

(tw5l - tb)/(tw,l - tb)d and (tw52 - tb)/(tw,z - tb)d are identical for heat

flux ratios of -1 and 1.

A thermal entrance length can be arbitrarily defined as the length re-
quired for t, - t;, to be within 5 percent of the fully developed value. A

herizontal dashed line corresponding to an ordinate of 0.95 is shown in figures
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of the rarefaction parameter pw/Rgt/Zpb. This has been done in figures 13

to 16 for several values of the heat flux ratio. The abscissas cover values of
u~/R t/Zpb ranging from O to 0.20, even though this latter value may perhaps
be outside the slip regime, since at lower densities, in the beginning of the
transition regime, prior findings suggest that slip-flow solutions may remain
fairly good (ref. 6). For all values of the heat flux ratio except qs/q; = O,
increasing the gas rarefaction shortens the thermal entrance length at either
wall. The increase in temperature jump with a decrease in accommodation coef-
ficient also has an important effect on the thermal entrance length. For the
heat flux ratio qz/ql = 0, increasing the rarefaction decreases the entrance
length at the heated upper wall (fig. 14(a)), while it increases the entrance
length at the insulated lower wall (fig. 14(b)). For a given mean free path,
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the length required for the wall temperature ratio to approach unity is
least for the channel with symmetrical wall heat flux (fig. 15), as noted

earlier.

OTHER RAREFACTION EFFECTS

Several other, less frequently considered rarefaction effects have been
cited in the literature and, for the sake of completeness, modification of the
heat-transfer results will be made or discussed to account for these slip ef-

fects.
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Wall Shear Work

It is proposed in reference 8 that when there is a slip flow an energy
balance at the wall must include the shear work done by the slipping gas. De-
noting, as before, the heat transfer from the upper and lower walls by a4y and
s, respectively, the proposal is equivalent to writing the temperature deriva-
tive at the walls in the fully developed region as

ot
K( =gq, + g¥ (61a)
Sy/yap 1
ot
K(a— = ~(gqp + g%) (61p)
y y:-b
Rat'l f ll' t 1 t 1.0 | | L —|
io of slip to average — =
velacity, g == T | ]
—~Jus Ratio of slip to average
2 B 8 V7 1 velacity,
. Va 35— ugl ]
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where g¥ 1is an equivalent heat flux defined as

2
Hug
g¥ = —— ( 62)
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Then if everywhere that a1 and g, formerly appeared qy + g¥ and 4o + g%,
respectively, are now written, the prior analysis continues to be applicable.
For an "adiabatic" lower plate (q2 = 0), the temperature derivative at the wall

is now given Dby (Bt/ay)y:_b = -q¥ /K.
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Modified Temperature Jump

The temperature Jjump derived for a stationary gas should be modified for a
moving gas (ref. 9). The proposal is tantamount to altering equations (32a)
and (32b) to read

£t (3t
* = o
tg,1 T w1 = P (E) (63a)
n=1
£y (3t
t -t*¥ =2 —( ) 63b
g,2 w,2 zb 5n n=-1 ( )
respectively, where
4 1 ug
% o - a g 5
Ty = By ¥ (0 T1 T a Z- g) (64)

Hence if tw 1 and tw.z are replaced at all places by t* ,1 and tw o, re-
spectively, the foreg01ng developments continue to apply.

Thermal Creep

When a gas adjacent to a surface encounters a temperature gradient along
the surface, there will be an additional velocity (thermal creep) induced in
the direction of increasing temperature (ref. 10) and the slip velocity is
altered from that given in reference 5 to

du 3 ot
Uy = igu_(gi) - + 7 —p— (Sg)yzib (65)

The analysis in the main body of the investigation has not included the
thermal creep velocity. As a consequence, the velocity field could be deter-
mined independently of the temperature and treated as fully developed. If
thermal creep 1s not negligible, the temperature and velocity fields are mubu-
ally interdependent, and the momentum and energy equation system for the gas
presents an extremely complicated mathematical problem. In the fully developed
heat-transfer region, of course, Bt/éx is a constant and the thermal creep can
be included in equation (65) without difficulty. In the thermal entrance re-
gion, however, dt/dx varies with x.

The present solutions without the inclusion of thermal creep are still
very useful, since they represent the zeroth-order solutions. The range of
validity of the present solutions must be established primarily by comparison
with experimental data. Within the knowledge of the author, there are no heat-
transfer measurements for low-density flows in conduits available with which to
compare the results predicted herein. A more general analysis that would take
into account thermal creep is also well in order. In any event, the present
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analytical solutions should prove useful to the design engineer by offering a
method that allows, in the absence of thermal creep, a rapid determination of
the eigenvalues and the coefficients of the series expansions with high accu-
racy. This in turn allows for a rapid determination of the heat transfer in
design calculations. ¥Finally, the analysis exhibits general effects of slight
gas rarefaction and wall heat fluxes on forced-convection heat transfer in
channels.

CONCLUDING REMARKS

Solutions have been obtained for laminar, forced-convection heat transfer
to a slightly rarefied gas flowing between parallel plates with constant (but
unequal) heat fluxes at the plates. The wall temperatures in both the entrance
and fully developed regions can be obtained as functions of the velocity and
temperature jumps at the wall, or as functions of the mean free path, for var-
ious wall heat flux ratios. Several cases of general interest are considered,
and the solutions are given in graphical form to illustrate the effects of
slight rarefaction and wall heat flux ratio on heat transfer to a flowing gas.

Lewls Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, June 9, 1964
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APPENDIX - SYMBOLS
coefficient defined in eq. (48)
accommnodation coefficient
coefficient in even series expansion
coefficient defined in eq. (59)
half distance between plates
coefficient in odd series expansion
constant defined in eq. (47)
specific heat of gas
arbitrary constant
dimensionless velocity, u(n) /T
function defined by eq. (25)

specular reflection coefficient

transverse temperature distribution in fully developed region

definite integral defined in eq. (50)

indefinite integral defined in eq. (54)

definite integral defined in eq. (56b), equal to Il

mean free path
Prandtl number, pcp/K

gas pressure

rate of heat transfer per unit area from wall to gas

shear work at wall
Reynolds number, 2pﬁb/u
gas constant

gas temperature

temperature of gas adjacent to wall



u gas velocity

b'd axial coordinate

Y even transverse distribution function
Y, eilgenfunctions of eg. (20)

v transverse coordinate

Z odd transverse distribution function

Z, elgenfunctions of eg. (22)

e thermal diffusivity, K/pcp

Pn 'VX; I

Ty eigenvalués of eq. (22)

®n d/?; Iy

¢ dimensionless axial distance, 4(x/2b)/RePr
M dimensionless transverse coordinate, y/b
6 dimensionless velocity slip coefficient, . /2b
K gas thermal conductivity

A, eigenvalues of eq. (20)

L gas viscosity

€ temperature-jump coefficient

Eu velocity-slip coefficient

P gas density

o ratio of specific heats

) function defined in eq. (16)

P rarefaction parameter, u1/§g€/2pb

Q function defined in eq. (186)

Subscripts:

b gas bulk condition




d fully developed region

e entrance region

s slip

W wall condition

0 entrance, x = 0

1 upper wall, y =D
2 lower wall, y = -b
Superscript:

- average
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